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Abstract

Crowdsourcing through human-computing games is an in-
creasingly popular practice for classifying and analyzing sci-
entific data. Early contributions such as Phylo have now been
running for several years. The analysis of the performance of
these systems enables us to identify patterns that contributed
to their successes, but also possible pitfalls. In this paper, we
review the results and user statistics collected since 2010 by
our platform Phylo, which aims to engage citizens in com-
parative genome analysis through a casual tile matching com-
puter game. We also identify features that allow predicting a
task difficulty, which is essential for channeling them to hu-
man players with the appropriate skill level. Finally, we show
how our platform has been used to quickly improve a refer-
ence alignment of Ebola virus sequences.

1 Introduction
Human computation has emerged as a popular ap-

proach to solve large-scale scientific problems in astronomy
(Skibba et al. 2012), molecular biology (Cooper et al. 2010;
Kawrykow et al. 2012), neuroscience (Kim et al. 2014), and
even quantum physics (Lieberoth et al. 2015). With more
applications of this technology underway, it is important to
identify the factors that contributed to the successes of this
approach, and improve the aspects that did not work as well
as expected. To this end, the analysis of the data collected by
the earliest systems may reveal important patterns that could
benefit to the next generation of scientific games.

In 2010, we released a game-with-a-purpose named Phylo
(http://phylo.cs.mcgill.ca), which aims to help
us improving the accuracy of the comparison of DNA data
(Kawrykow et al. 2012; Kwak et al. 2013). This problem,
known as the multiple sequence alignment (MSA), is an
essential piece of a vast body of biological studies (Edgar
and Batzoglou 2006). It aims to help revealing conserved
patterns that may have a functional role. Phylo’s tasks are
presented as in a casual tile matching game, where align-
ment problems are embedded in a puzzle accessible to any
player, including those without any prior training in biology
or computer science. Most importantly, the game is intuitive
and allows the players to play Phylo without understanding
the underlying biology, and without completing any tutorial.
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This broadens the spectrum of participants and taps into the
computing power generated by regular, non-scientist human
computers. Special care is taken to present the puzzles in a
fun, exciting, and accessible manner while retaining the sci-
entific interpretability of the data.

Formally, a multiple sequence alignment is represented as
a matrix with a motive to place in the same column charac-
ters that are homologous (i.e. derived from a same common
ancestor), possibly inserting gap characters to account for
the presence of insertions and deletions. Although the prob-
lem of pairwise sequence alignment can be solved optimally
in quadratic time (Feng and Doolittle 1987), calculating an
optimal MSA is an NP-hard problem (Akutsu, Arimura,
and Shimozono 2000). A large number of fast and efficient
heuristics have been developed to align genomic DNA se-
quences (Blanchette 2007), but the solutions returned by
these algorithms are potentially suboptimal. It is thus com-
mon for biologists to manually tweak alignments produced
by computer programs in order to increase their accuracy
(Carrillo and Lipman 1988).

With the rapid expansion of genome sequencing technolo-
gies, the shear quantity of DNA sequences to be aligned (po-
tentially hundreds of sequences of several billion characters
each) makes the task of producing and maintaining highly
accurate MSA intractable for small groups of experts. Be-
cause manual curation is a necessary step to guarantee the
quality of biological sequence alignments, a crowdsourcing
solution appears to be a perfect strategy to address this bot-
tleneck.

Phylo aims to improve MSA solutions already pre-
calculated by state-of-the-art algorithms. Eventually, in the
case a MSA cannot be improved, it can also serve as a cer-
tificate to validate the input data. Phylo starts from a com-
putationally calculated MSA of multiple vertebrate genomes
(Rhead et al. 2009), identities portions of the alignment that
are potentially sub-optimal, and transforms them into small
puzzles that are dispatched to players (See Figure 1). Once
a player has completed a puzzle, the solution found is re-
turned to our server for evaluation. If the alignment found
by the player is deemed superior to the original computer-
produced alignment (based on a parsimony-based scoring
scheme (Wang and Jiang 1994)), it replaces it in the global
alignment. Phylo thus contributes to improving a resource
(multiple genome alignment) that is used every day by re-



searchers in biology and genetics (e.g. detection of impor-
tant DNA motifs associated with a biomolecular function,
inference of ancestral genomes), while being a fun and edu-
cational game for non-experts.

In this paper, we analyze the data (i.e improvements of
MSA generated by gamers, user statistics) collected through
Phylo since November 2010. It constitutes a unique corpus
of 7 years of data, which involved more than 400,000 unique
users and generated more than 1 million of puzzle (MSA)
solutions. Importantly, since 2014 Phylo also features an ed-
ucational portal that enables us to compare the performance
of casual users vs students who played Phylo as part of their
curriculum.

Our study uses the data collected through Phylo to inves-
tigate multiple key aspects of a human-computing pipeline:

• (Task difficulty) We identify which features are most use-
ful to predict if a computer-generated puzzle (i.e. align-
ment) can be improved (usefulness), and further how
many solutions need to be collected to improve a MSA
(difficulty).

• (Task Aggregation) We describe our pipeline filtering and
assembling the solutions from users, and quantify the
magnitude of the improvement resulting from this ap-
proach. We also estimate the practical efficiency of our
system and show that significant improvements can be ob-
tained by looking at the top 30% of the solutions collected
within the first 100 days after the release of a puzzle.

• (User profiling) We analyze the individual performance of
each player, and characterize the performance of casual
vs assiduous players. In particular, we show that recurrent
users are performing much better on difficult puzzles.

• (Prior knowledge) We compare the accuracy of align-
ments of casual gamers (playing the game without prior
introduction to the biological motivation of the puzzle) vs
students who played Phylo in an educational setting. In-
terestingly, our results suggests that both populations are
performing equally well.

In addition to this study, we also use our system to im-
prove the reference alignment of Ebola virus sequences
available on the UCSC Genome browser (Kent et al. 2002).
We show that in a relatively short period of time our plat-
form has been able to mobilize citizens for curating sci-
entific data. Our results are publicly available at http:
//csb.cs.mcgill.ca/phylo.

In summary, this paper addresses several key questions
such as, deciding the accuracy with which we can decide
the difficulty of puzzles and most importantly, it defines the
average time, average number of expected attempts, and ac-
curacy with which we can achieve a good alignment using
human computers. In addition, we also check whether there
is an impact of players playing more number of times in their
aligned result, also if players have prior knowledge of biol-
ogy in context with the game, will they perform better? It
also evaluates the aggregated result obtained by placing the
human aligned puzzle back into the broader MSA they were
extracted from. All these scenarios have been addressed in
this paper using analytics performed on the data generated

by human computers. The rest of the paper engages in re-
solving such challenges. Section 2 describes the methods
adopted for puzzle extraction, routing, alignment, aggrega-
tion, and user analysis. Then, we present our results in Sec-
tion 3, and discussed them in Section 4.

2 Methods
2.1 Data sets
We analyzed data collected over 5 years by Phylo. The com-
plete data set consists of 1907 alignments puzzles extracted
from 575 genomic regions (alignment blocks). Each puzzle
consists of a set of 2 to 8 DNA sequences from vertebrate
species, including human, of length 10 to 21. The puzzles
were played on by different players, for a total of 465027
puzzle solutions, i.e. 243 solutions per puzzle on average.

2.2 Scoring alignments
Each puzzle and alignment block was aligned computation-
ally using several tools (Multiz (Blanchette et al. 2004), T-
coffee (Notredame, Higgins, and Heringa 2000), MAFFT
(Katoh et al. 2002)). The highest scoring of the machine-
computed alignments is called the machine-computed align-
ment. This score is used as a ”par” score that players are
challenged to beat. For each puzzle, each solution submitted
by a player is evaluated and the highest scoring solution is
retained. Its score is called the human-computed alignment
score.

Difference between an alignments’ best score and its orig-
inal score is referred as the scope of improvement. We use
this difference to obtain the normalized scores for each puz-
zle or alignment. Puzzles with the least possibility of im-
provement were considered as difficult puzzles, so if the av-
erage normalized scores of puzzles were less than or equal
to 0.33 and greater than 0, then they were considered as dif-
ficult to align. Similarly, a normalized score value between
0.33 and 0.66 was considered as medium difficulty, whereas,
a value greater than 0.66 represents easy puzzles.

Robinson-Foulds distance: To further compare the accu-
racy of machine and human computed alignments, we eval-
uated the extent to which phylogenetic trees inferred from
these alignments are consistent with the known phylogeny of
the species involved. For each puzzle, the neighbor-joining
algorithm (Saitou and Nei 1987) was used to produce a tree,
and this tree was compared to the correct phylogenetic tree
available through the UCSC Genome Browser (Karolchik
et al. 2003). The tree comparison was carried out using the
Robinson-Foulds (RF) tree-to-tree distance (Robinson and
Foulds 1981; Waterman and Smith 1978) (implemented in
(Huerta-Cepas, Serra, and Bork 2016)), which is defined as
the number of subtree prune-and-regraft operations needed
to transform one tree into the other.

Entropy: The entropy of an alignment column is a clas-
sical measure of conservation (Lin 1991; Valdar 2002a;
Henikoff and Henikoff 1994), with perfectly conserved
columns having an entropy of zero whereas columns where
many different characters are represented in roughly equal
proportions have high entropy. If we define Pa as the pro-
portion of character a ∈ {A,C,G, T,−} in a given align-



Figure 1: Interface of Phylo (2013 release). Each row is composed of a sequence of bricks of 4 different colors representing the
4 nucleotides A, C, G, and T. These sequences have been extracted from the DNA of different species represented with a icon
on the left of the grid. Participants move the tiles left or right in order to maximize the number of color matches in each column.
Although, the order of the bricks cannot be changed. Color mismatches and gaps are thus unavoidable and bring penalties. The
phylogenetic tree on the left indicates the priority in which the rows should be aligned.

ment column, then the entropy of that column is defined as
Σa∈{A,C,G,T,−}Pa log(Pa) . This operation is performed for
individual columns and later an average of all gives the com-
prehensive entropy value of the puzzle.

2.3 Prediction of puzzle difficulty levels
In order to train a machine learning predictor to recognize
difficult puzzles, these puzzles need to be represented us-
ing a vector of features. We extracted and evaluated the fol-
lowing 11 features calculated from the machine-computed
MSA: (1-4) proportions of A, C, G, and T in S, (5) propor-
tion of gaps, (6) mean GC content (this relates to the struc-
tural properties of DNA), (7) mean entropy of alignment
columns, i.e. entropy of the frequency distribution of the
four nucleotides and gaps, (8) average length of sequences,
(9) number of sequences, (10) tree-entropy based on depth
of the leaves of phylogenetic tree of S, calculated by cre-
ating a vector of depth of all the leaf nodes in a tree and
then calculating its entropy; we used tree-entropy as feature
to account for phylogenetic tree information, (11) score of
machine-computed alignment.

For each puzzle, we also compared the score of the best
human-computed alignment to the score of the machine-
computed alignment, and defined the score gain as the dif-
ference between the two. Positive score gains correspond to
alignments that were better aligned by (some) humans than
by algorithms. We further subdivided puzzles based on the
value of score gains to obtain two equal size classes. The
puzzles with a score gain greater or equal to 17 were as-
signed to the positive class (i.e. the class of puzzles where
humans have produced significantly improved alignments).
The rest were assigned to the negative class (little or no im-
provement).

We trained and benchmarked multiple binary classifica-
tion algorithms: logistic regression, neural network, extra
tree classifier, random forest classifier, Ada boost classifier,
gradient boost classifier and decision tree classifier (all im-
plemented in scikit-learn). We partitioned the dataset into
60% training set to learn model parameters and 40% test-

ing set to evaluate the learned models. The hyper parameters
were selected using 10-fold cross validation on the training
data. Area Under the Curve of the Receiver Operating Curve
(AUC ROC) on testing set was used to measure models ac-
curacy.

In many cases, it can be useful to go beyond a binary clas-
sification problem and instead predict the expected value of
the alignment score gain that can be expected for a given
alignment. This can for example be useful to properly assign
puzzles to users with the right level. We experimented with
different machine learning regression models to attempt to
predict the score gain from the set of 11 features, and eventu-
ally selected neural networks because of their superior per-
formance. We use 10-fold cross-validation on the training
data for hyper parameter search and R2 measure on the test-
ing set for accuracy measurement.

2.4 Aggregation
When multiple puzzles are extracted from the same align-
ment region, their solutions need to be reinserted in the
alignment in order to properly evaluated the improvement
obtained. This is a process we call aggregation. We selected
alignment solutions from puzzles with the best score and
least entropy. Then the selected alignments were reinserted
and compared with the entropy of revised alignment block
to the entropy of the original alignment block.

2.5 User efficiency
The efficiency of human-computing systems depends of the
expertise of participants. Characterizing the precision of an-
swers from their level of expertise and background knowl-
edge is thus essential to understand the capacity and behav-
ior of the system. In fine, this knowledge can also help us to
improve the effectiveness through better routing of the tasks,
but also to enhance the satisfaction of the users, hence sus-
tainability of the system.

In this paper, we analyze taxonomies that can distinguish
educational players versus game players, as well as rookies
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Figure 2: Histogram plot of the improvement in the score for
1556 puzzles, where improvement is measured as the differ-
ence between the best score produced by a human player and
the initial computer-based alignment.

versus expert players. For each solution, we quantify the im-
provement as the difference between the score obtained and
the initial score of the computer alignment. Then, we define
the efficiency of a player as the average of the normalized
alignment scores of the solutions returned. The results are
distributed in 3 categories representing the difficulty of the
puzzles (i.e. easy, medium, or hard).

3 Results
We analyzed the data collected by Phylo over the last 5 years
in order to deduce lessons that can help us to design more
efficient human computing systems in the future. This data
set consists of more than 465,000 solutions for nearly 2000
puzzles collected from November 2012 to December 2016.

3.1 Prediction of puzzle difficulty
A key step in Phylo is to assess the difficulty of a puzzle in
order to route it to players with the appropriate skill level.
Ideally, the difficulty should be estimated automatically, be-
fore any player has tried the puzzle. Here, we study how a
difficulty level (assessed retrospectively based on the ability
of players to improve the alignment score) can be predicted
by machine learning algorithms.

Figure 2 shows the distribution of the improvement of
alignment scores (as calculated in the game) produced by
human players over the machine-computed alignments. Al-
though in many cases improvements are modest, the tail of
this distribution highlights a significant number of puzzles
with very large improvements. It shows that puzzles are of
unequal difficulty – a phenomenon we study further in this
section.

We labeled the puzzles as easy or hard based on the
player’s success rate (See Section 2.3). Then, we trained
different types of machine learning classifiers to predict a
puzzle’s label based on a variety of features (see Methods).
Figure 4 shows the classification accuracy. For each predic-
tor, we calculated the Area Under the ROC Curve (AUC),
based on 10-fold cross-validation, using a single feature at
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Figure 3: Measuring effects of feature combination on mod-
els performances. The features from the ordered list (based
on individual feature importance in decreasing order) are
added incrementally to train models.
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Figure 4: Individual feature performance is measured
through AUC values on testing set. Each model is trained
using one feature at a time.

a time. As anticipated, we observe that the most informa-
tive features are those capturing the number of sequences
to be aligned, but also their dissimilarity (tree-entropy and
mean entropy of column-wise residues). Then, we trained
and evaluated multi-feature models by incrementally adding
features in decreasing order of their value (Figure 3). Re-
markably, it is the inclusion of the feature corresponding to
the score of the initial computer-calculated alignment that
provides the largest improvement in prediction accuracy.
This is not unexpected, as alignments whose initial scores
are already high are difficult to improve.

We then considered the regression version of the problem,
where the goal is to predict the quantitative improvement
in score one can expect for a given puzzle. The best pre-
dictions, with R2 value of 72% were obtained using a neu-
ral network regression model whose hyper parameter values
with L2-norm regularization regularization (weight of 10−3)
and 300 nodes in each of the two hidden layers. This signifi-



Difficulty
(Number of Puzzles) Nu Nw Nopt

Gain of
Efficiency

Easy (14) 4123 2100 1752 115.4%
Medium (80) 19653 13600 12501 48.4%
Difficult (466) 121531 89472 63205 50.7%

Table 1: Estimate of the total number of solutions that needs
to be collected to obtain the highest score in the uniform
(Nu), weighted (Nw) and optimal (Nopt) routing schemes.
Puzzles are sorted in 3 categories (easy, medium, and dif-
ficult) representing the observed difficulty for players to
achieve the highest score.

cantly outperformed other predictors such as a ridge regres-
sion model with L2-norm regularization, which obtained an
R2 value of only 56%. This is because none of the predictor
variables used in the regression model are highly correlated.

The last and the most important step is to analyze the ef-
ficiency of the proposed model with respect to the current
scheme that uniformly distributes the puzzles based on the
number of solutions collected. The preliminary step for this
comparison is to obtain the number of times a puzzle in each
category should be sent to get good alignments. To obtain
an accurate estimate of this, we identified the top 25% of the
puzzles in each category which took maximum attempts to
reach to its highest score and calculated their average. Top
25% were taken to ensure significant number of spare at-
tempts for achieving good alignments. We obtained these
values (n0) as 150, 170 and 192 for easy, medium and diffi-
cult puzzles respectively.

Next, we calculate the efficiency as (Nu−Nw)
Nopt

, where Nu

is the total number of puzzles sent in the uniform model
(all puzzles have the same weight), Nw is the total num-
ber of puzzles sent using labels produced by our classifier,
and Nopt is the minimum number of puzzles that has to be
sent to obtain all high scores. Nw is calculated as the prod-
uct of the number of puzzles in a particular category, and the
expected number of solutions we need to collect to obtain
the highest score (n0). Table 1 shows the gain in efficiency
obtained for each category of puzzles (i.e. easy, medium, or
hard). The data sets are described in Section 2.3.

Lesson 1: Our results suggests that the difficulty of
puzzles can be relatively well predicted. These predic-
tions can be used to significantly improve the rout-
ing of puzzles (i.e. tasks), and thus the number of
task to complete to obtain the best answer. The gain
in efficiency is more pronounced on easy puzzles,
which suggests that this results is primarily obtained
by avoiding unnecessary calculations on easiest tasks.

3.2 Evaluation of the accuracy of solutions
In Phylo, the puzzles played by the participants are extracted
from a larger genome alignment. Before addressing the anal-
ysis of the performance of the aggregation of all solutions,
we want to assess the quality of the improvements obtained
by humans regardless of the origin of the alignments.

Figure 5: Cumulative distributions of the Robinson-Foulds
distances between the true phylogenetic tree and trees
inferred from either the machine-computed or human-
computed alignments.

Alignments with known phylogenetic tree Although dif-
ferent alignments can be compared on the basis of various
alignment scoring schemes, their true accuracy cannot be di-
rectly assessed because the biologically correct alignments
are not known. Here, we use an indirect, biologically moti-
vated approach in which phylogenetic trees are inferred for
each candidate alignment using neighbour-joining algorithm
and compared to the correct phylogenetic tree (Kent et al.
2002) for the set of species considered. This method enable
us to identify alignments improving their fitness to the only
reliable data we have about them.

Figure 5 shows the cumulative distribution of the
Robinson-Foulds distance between the inferred and true
trees. We observe a slightly larger proportion of small RF
distances among trees derived from human-computed align-
ment, suggesting that those alignments may be more accu-
rate the machine-computed alignments. However, this differ-
ence is not statistically significant (based on a Kolmogorov-
Smirnov test), in part because several puzzles had machine-
computed and human-computed solutions that were identi-
cal. 6.3% of the alignments provide phylogenetic tree closer
to the known phylogenetic than those aligned via machine.
This number could seem relatively low, but determining
a phylogeny is a difficult problem and our results show
that significant improvements can be obtained using human
alignments.

Alignments with unknown phylogenetic tree When the
true phylogeny is unknown, the entropy emerges as a rea-
sonable criterion for estimating the information content at
each position (i.e. column) of the alignment. First, we com-
pared the sum of column entropy and gaps (Valdar 2002b)
of the alignments produced by human players to those cal-
culated by computers. Remarkably, 57% of the user aligned
puzzles were either better or at par with the machine aligned
sequences, and in many cases by a large margin. This sug-
gests again that although users are not always able to im-
prove alignments, they do so in a non-negligible fraction of
the puzzles.



Lesson 2: There is no gold standard score to esti-
mate the quality of an alignment. Phylo uses a simpli-
fied consensus scheme to guide the participants. Hu-
mans appear to generate improvements that increase
the likelihood of their alignments based on multiple
external (biologically motivated) criteria that were not
presented to them. This finding suggests that we can
capture the intuition that humans developed to identify
good alignments.

3.3 Aggregated alignment score improvement
Puzzles are small alignments that have been extracted from
a (much) larger alignment we are trying to improve. There-
fore, many puzzles originate from the same genomic region
(alignment block). The aggregation mechanism aims to find
the best collection of non-overlapping puzzle solutions that
can be re-inserted to improve the original alignment block.
Once again, since there is no gold standard metric to com-
pute the quality of an alignment, we estimate the perfor-
mance of the aggregation process using indirect measures.

Aggregation with known phylogenetic tree The ob-
served alignments with smaller RF distances among trees
derived from human-computed alignment were inserted
back into the original blocks. Then an analysis of the change
in RF distance which was calculated as the difference be-
tween the RF distance of machine aligned blocks and aggre-
gated user aligned blocks. Using this metric, we achieved
an enhancement of 36.7% of these blocks. The remaining
blocks could not be improved by the players, either because
the original alignment was already optimal, or because the
enhancement was not good enough to show a correct predic-
tion of phylogenesis.

Aggregation with unknown phylogenetic tree In this
case, the best scoring alignments calculated by humans with
least entropy were inserted back into the original blocks.
Then, we performed an analysis of the change in entropy
value, which was calculated as the difference between the
entropy of machine aligned blocks and aggregated user
aligned blocks. We achieved an enhancement of 66.3% of
these blocks, with eventually some dramatic improvements
(Figure 6). The remaining blocks could not be improved by
the players, either because the original alignment was al-
ready optimal, or because the problem was too hard for play-
ers to obtain a good alignment.

Lesson 3: The aggregation of solutions selected
through a basic (simplified) scoring scheme available
to users, is sufficient to yield significant improvements
of a global problem (i.e. alignment).

3.4 User Analysis
We analyze the performance of the various types of users.
Since its launch in 2010, Phylo has now 35,913 registered
users (Note: participants can also play anonymously with-
out registration), for which we recorded the number and dif-
ficulty of puzzles played. Moreover, since 2014 Phylo also

Figure 6: Change of entropy after aggregation of user
aligned puzzles to the initial alignment. The x-axis repre-
sents the difference between the entropy of the machine
aligned sequences and user aligned sequences. Positive val-
ues indicate an improvement of the alignment.

features an educational interface (http://phylo.cs.
mcgill.ca/submit/) that enables instructors to regis-
ter students and track their performances. This information
allows us to study the impact of a prior knowledge about
the multiple sequence alignment problem on the quality of
solutions submitted.

Rookies vs experts First, we aim to determine if recurring
users gain experience and generate better alignments than
casual gamers. Figure 7 compare the performance of rook-
ies (≤ 20 puzzles played) and experts (≥ 40 puzzles com-
pleted) on puzzles with various difficulties (easy, medium,
and hard). Interestingly, we note that rookie players perform
similarly to experts on easy puzzles. However, when the dif-
ficulty of the puzzles raises to medium or hard, expert play-
ers clearly outperforms their less experienced counterparts.
A F-test suggests a P-value of 0.483, 0.94 and 0.018 for easy,
medium and hard puzzles respectively between expert and
rookie users. It confirms that entry levels are sufficiently ac-
cessible to allow participants to learn the rules, and that our
human-computing system can benefit of recurring users.

Background knowledge Two types of players have been
using Phylo in the past few years: (i) casual gamers, who
play just for fun, and (ii) educational players, who play in
the context of a high-school or university biology/bioinfor-
matics course through our educational interface. A total of
170 puzzles were played by both types of users, which we
used to assess the performance of each group.

We observe a P-value of 0.47 while performing T-test
on the dataset of educational players and casual players. It
demonstrates that the benefit of a background knowledge to-
ward the production of better alignment is difficult to assess.
In figure 8, we show the performanc achieved by educational
players playing for education against casual on puzzles with
various difficulties. Although educational users seem to ini-
tially benefit of their background knowledge, the difference
disappears when the difficulty increases.



Figure 7: Average performance of rookies (≤ 20 puzzles)
and expert players (≥ 40 puzzles) on easy, medium, and
hard puzzles. The black dots above the box represent outliers
with more than 3/2 times of the upper quartile. The black
dots below represent outliers with less than 3/2 times of the
lower quartile.

Figure 8: Average performance of casual (no prior training)
and educational users (benefiting of background knowledge)
on easy, medium, and hard puzzles. The black dots above
the box represent outliers more than 3/2 times of the upper
quartile while the ones below represent outliers less than 3/2
times of the lower quartile.

Difficulty Number of
Puzzles

Number of
Solutions

Rank of highscore
µ Q3

Easy 25 2075 83 150
Medium 255 21678 85 170
Difficult 1117 103635 93 192

Table 2: Number of puzzles collected and rank of highest
scoring alignments.

Lesson 4: The level of expertise accumulated by the
users through their long-term engagement results in
enhanced performance in the most difficulty tasks (i.e.
puzzles). It follows that recurring users are a precious
resource for GWAPs. By contrast, a prior introduction
to the principles of the game (i.e. here a multiple se-
quence alignment) does not seem to provide a long-
term advantage. This confirms the importance of de-
sign techniques in GWAPs.

3.5 Latency and robustness of solutions
One important aspect to guarantee the efficiency of human-
computing systems at solving an optimization problem, is to
make the best possible estimate of the number of solutions
that needs to be collected to offer some confidence in the
quality of the solution returned by the system. In particu-
lar, we need to identify the parameters that influence these
estimates.

Figure 9 shows that with an average of 320 puzzles solved
per day (average over the last 6 years) most of the improve-
ments in alignment scores are obtained relatively quickly,
within the first ≈ 100 days. Past this age, the accumulation
of solutions appears to be redundant and the puzzle can be
retired.

Then we investigate the impact of the difficulty of puzzles
on these statistics. Table 2 shows the number of attempts
taken to get to the highest score. In other words, the number
of solutions we need to collect to get one that is not further
improved by players. On an average, the ranks of the highest
scoring alignment are comparable, albeit a slight (expected)
increase of the rank is observed on the most difficult puz-
zles. The length of the period during which we collected so-
lutions enables us to offer some guarantees on the robustness
of these estimates. In average, the highest scores got reached
after collecting only≈ 30% of the total number of solutions.

These statistics allow us to estimate the volume of data
that can be treated by our system per. With an average of
320 solutions collected per day, we can currently envision
to solve 2-4 puzzles per day depending of their complex-
ity and the target level of confidence in the results. Thus, a
typical genomic bloc within a week. Of course, regular or
occasional growth of the traffic will increase these numbers
(Sauermann and Franzoni 2015).

Lesson 5: The efficiency of a human-computing sys-
tem relies on its capacity to quickly obtain a robust
solution. This data enables us to estimate the practical
efficiency of the system.



Figure 9: Progression of high scores. The orange line shows
the normalized high scores since the release of the puzzles.
The blue curve plots the number of solutions collected.

3.6 Case Study: Ebola virus
In 2015, the Ebola epidemics hit West Africa. The genomes
of several strains of the virus were sequenced and aligned
(WHO Ebola Response Team 2014) in order to study the
virus’ function and evolution. At that time, the Phylo player
community was enlisted to help improve the accuracy of
these alignments. Improved alignment scores (measured
based on decrease in entropy of the revised alignments) were
obtained for 144 of the 411 alignment blocks considered.
The best scored alignments were selected and replaced in the
original block to obtain the enhanced version of DNA align-
ments for Ebola virus. Consistent with observations made
on larger sets of puzzles, optimal solutions were generally
found relatively quickly (within 95 days) and longer periods
of puzzle availability did not result in significant alignment
score gains. Improved alignments are publicly available at
http://csb.cs.mcgill.ca/phylo/.

Lesson 6: Human-computing systems can be used to
quickly mobilize citizen scientists and produce valu-
able scientific data in case of emergency crisis.

4 Discussion
In this paper, we analyzed the data collected during the last
6 years (2010-2016) through Phylo, a GWAP and human-
computing system designed for solving a fundamental prob-
lem in bioinformatics: The multiple sequence alignment
problem (Blanchette 2007; Edgar and Batzoglou 2006).

In practice, multiple sequence alignments calculated by
state-of-the-art alignment programs are often manually cu-
rated. The increasing amount of data generated by novel
DNA sequencing technologies reinforces the relevance of a
human-computing approach, and suggests the broad impact
that a sustainable human-computing systems may have in
biology (Good and Su 2013).

An asset of this study resides in the volume and broad
spectrum of available data. Although early reports demon-
strated the capacity of our system to improve alignments
(Kwak et al. 2013; Kawrykow et al. 2012), until now the

nature and magnitude of the factors influencing the perfor-
mance of our system were not characterized.

This study focuses on Phylo, but many of the observa-
tions and conclusions we made here can be transposed to
other GWAPs and scientific games. They will also help us
as to design a novel generation of crowd-computing systems
for genomics. The principal findings of this work have been
summarized in 6 lessons.

First, an accurate estimate of the complexity of a task can
lead to better routing strategies and thus more performant
human-computing systems (Yang et al. 2016). Lesson 1 re-
vealed that the difficulty of our puzzles can be accurately
predicted and used to significantly reduce the amount of
work needed to complete our tasks. Symmetrically, at the
other end of the pipeline, the aggregation stage can benefit
of a precise estimate of the confidence in the solutions re-
turned by the users (Cheng, Teevan, and Bernstein 2015).
Lesson 5 enabled us to validate this concept, and use it to
increase the computing capacity of our system. To some ex-
tent, our data can be compared to user statistics collected
with another similar scientific game (Rallapalli et al. 2015).

Another intriguing aspect of our framework resides in the
impact of the decomposition of the initial problem into sim-
ple tasks on the performance of the reconstruction (Law and
Ahn 2011). Lessons 2 and 3 enabled us to validate that a
simplified presentation of the alignment problem is able to
capture the wisdom of the crowd, and global intuition.

Characterizing the performance of participants based on
their experience and background is also key to improve the
efficiency and sustainability of the system (Law and Ahn
2011). In addition to enhance the scientific productivity,
since 2013 Phylo also contributes to educate the public about
genomics through its educational interface. The analysis of
these statistics enables us to investigate the benefits of prior
knowledge of the tasks. Overall, our observations (Lesson 4)
follow previous conclusions made on other platforms sug-
gesting that (i) recurrent users outperforms rookies on com-
plex tasks only (Papoutsaki et al. 2015), and (ii) a prior train-
ing does not provide an significant long-term advantage (An-
dersen et al. 2012; Horowitz et al. 2016). However, recent
studies suggest that customized training mechanisms could
take advantage of this situation (Lee et al. 2016).

Finally, we confirmed that human computers can actually
enhance the alignment accuracy of both vertebrate and Ebola
virus genomes. Our case study on Ebola virus is also a proof
of concept that citizens can be quickly mobilized to conduct
scientific data curation in case emergency crisis (Lesson 6).

Eventually, the data collected through Phylo could be
used to help us designing novel alignment heuristics. Such
approach has already been successfully applied with Foldit
(Khatib et al. 2011). However, this enterprise would require
to collect more data on the progression of players while solv-
ing a puzzle.
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